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Abstract: Examination of changes in the <r electronic structure of conjugated hydrocarbons shows that for each 
bond both c compression energy and •K bonding energy are approximately linear functions of tr bond order. It 
follows that a contributions to resonance energy are proportional to x contributions, thus providing a rationaliza­
tion for the simple HMO method which takes into account only the latter. Heats of atomization computed by the 
HMO method are found to be accurate to 0.1 %, implying an accuracy of ±0.005/3 in resonance energy per T elec­
tron. 

The concept of aromaticity has produced a large 
literature. In spite of this it is a property with no 

generally agreed upon quantitative experimental defini­
tion.1 The consensus seems to be that aromatic 
molecules are unusually stable and that typically they 
react by electrophilic substitution. Beyond this there 
is not agreement. Theoreticians have examined the 
correlation of aromaticity with various computed 
molecular indices. Without a precise experimental 
definition there can of course be no precise correlation, 
but until recently theory could not make correctly 
even the rough distinctions that are apparent from 
experiment. In particular the failure of Hiickel de-
localization energy is well known. Almost all com­
pounds, even ones that are very unstable, have sig­
nificant derealization energy. Further, the computed 
derealization energies are not in the observed experi­
mental order. 

A new approach by Dewar seems to have over­
come these faults. Dewar and Gleicher2 first noted 
that plots of computed total C-C bonding energy vs. 
number of C-C bonds give very accurate straight lines 
for acyclic polyenes. The bonding energy of such a 
polyene therefore equals the sum of empirical bond 
energy terms. For cyclic molecules this is not true, 
and the theoretical resonance energy was defined as the 
difference between the calculated energy and the sum of 
bond energy terms. An important point is that even 
in the polyenes, "single" bonds have considerable 
double bond character. Total binding energy of a 
reference polyene is therefore larger than earlier refer­
ence binding energies, and as a result, computed reso­
nance energies are in general smaller than by earlier 
methods. More important is that these smaller reso­
nance energies turn out to be in proper experimental 
order.3 

Dewar's calculations were done by the Pariser-Parr-
Pople method for the w electrons with a electrons being 
taken into account empirically. We have shown that 
equally good results can be obtained from the simple 
HMO method if, following Dewar, one uses a polyene 
reference structure.4,6 The resonance energies per -K 
electron (REPE) so obtained correlate with experiment 

(1) A. J. Jones, Rev.Pure Appl. Chem., 18, 253 (1968). 
(2) M. J. S. Dewar and G. J. Gleicher, J. Amer. Chem. Soc, 87, 685, 

692(1965). 
(3) M. J. S. Dewar and C. de Llano, ibid., 91,789 (1969). 
(4) B. A. Hess, Jr., and L. J. Schaad, ibid., 93, 305, 2413 (1971). 
(5) B. A. Hess, Jr., and L. J. Schaad, Tetrahedron Lett., 17 (1971). 

for nonalternants,46 where derealization energy is 
notoriously poor, as well as for alternants. These con­
clusions are illustrated by the ten compounds listed in 
Figure 1. 

The success of our treatment of simple HMO cal­
culations in the prediction of aromaticity of cyclic con­
jugated hydrocarbons raises several questions. In this 
paper we examine two of these relating to the a elec­
tron structure of aromatics. First, why does our model 
which neglects the a electrons entirely work as well as 
Dewar's more elaborate model which treats them ex­
plicitly? We shall show that this is explained by a 
linear relation between a and T resonance energies. 

Second, can the simple HMO model be employed to 
calculate accurate heats of atomization? Dewar has 
used the accuracy of computed heats of atomization as a 
test of his method. We shall show that the HMO 
method does as well. 

The a Structure 
Our definition of resonance energy is modeled after 

Dewar's, except that we consider the ir electrons only, 
and calculate their energy with the elementary HMO 
method. We find, as does Dewar, that acyclic con­
jugated polyenes have no resonance energy; i.e., the 
calculated HMO energy is the same as the energy of the 
localized model. In general our resonance energies of 
cyclic compounds agree with Dewar's, with the simpler 
method occasionally giving results in better agreement 
with experiment. Note that our bond energy terms for 
calculating the energy of the localized structure (Table 
I, ref 4) refer to 7r energies only. In particular, the 
single bond energies refer to the 7r parts of the "single" 
bonds. There is thus a certain amount of derealiza­
tion even in the localized model. "Additive" might be 
a better adjective than "localized" here, but we shall 
follow Dewar and continue to use "localized." Sec­
tion 5.5 of ref 7 contains a further discussion of this 
point. 

Figeys8 has recently published a treatment of con­
jugated systems that is in many ways intermediate be­
tween ours and Dewar's. Figeys calculates IT energies 
with an iterative Hiickel method in which the resonance 
integral is a function of calculated bond length.9 <r 

(6) B. A. Hess, Jr., and L. J. Schaad,/. Org. Chem., 36, 3418 (1971). 
(7) M. J. S. Dewar, "The Molecular Orbital Theory of Organic Chem­

istry," McGraw-Hill, New York, N. Y., 1969. 
(8) H. P. Figeys, Tetrahedron, 26,4615, 5225 (1970). 
(9) H. P. Figeys and P. Dedieu, Theor. Chim. Acta, 9,82 (1967). 
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Figure 1. A comparison of resonance energies per TT electron. The Huckel results in the first column are delocalization energies. The 
Pariser-Parr-Pople results in the second column are from ref 14; those in the third column are from ref 3 except for calicene, cyclobutadiene, 
and fulvalene, which are from C. de Llano, Ph.D. Dissertation, The University of Texas, 1968, and benzcyclobutadiene, from N. C. Baird, 
J. Chem. Educ, 48, 509 (1971). The Huckel results in the fourth column are REPE's from ref 4 using the value of 8 obtained from method B 
of the present paper. Experimental properties are from: calicene, A. S. Kende, P. T. Izzo, and P. T. MacGregor, /. Amer. Chem. Soc, 88, 
3359 (1966), A. S. Kende, P. T. Izzo, and W. Fulmore, Tetrahedron Lett., 3697 (1966), E. K. v. Gustorf, M. C. Henry, and P. V. Kennedy, 
Angew. Chem., Int. Ed. Engl., 6, 627 (1967); fulvene, J. Thiec and J. Wiemann, Bull. Soc. CMm. Fr., 177 (1956); heptalene, H. J. Dauben and 
D. J. Bertelli, / . Amer. Chem. Soc, 83, 4569 (1961); pentalene, R. Bloch, R. A. Marty, and P. de Mayo ibid., 93, 3071 (1971); benzcyclo-
butadiene and cyclobutadiene, M. P. Cava and M. J. Mitchell, "Cyclobutadiene and Related Compounds," Academic Press, New York, N. Y. 
1967, G. M. Badger, "Aromatic Character and Aromaticity," Cambridge University Press, Cambridge, 1969; fulvalene, W. von E. Doering, 
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energies were computed in Dewar's fashion, but using a 
harmonic potential rather than Dewar's tractrix equa­
tion. This seems to give equally good computed heats 
of atomization. 

One might imagine that neglect of a energy does not 
affect computed resonance energies because both the 
actual structure and the localized structure have the 
same <r energy which then cancels in taking the differ­
ence. However, this is not true. The energy of each 
bond type in the localized model is fixed with no allow­
ance for variation of energy with length. Hence, 
there can be no canceling of the a compression energy 
of the actual molecule. Alternatively, <r compression 
energies might be small compared to TT energies, and 
their neglect insignificant. We shall see that this is not 
true either. 

To examine this problem in more detail let us start 
with the Huckel approximation of <r-ir separability 

E = Er + E. (X) 

In the Huckel treatment one ignores the a energy and 
considers only 

ET = £(HMO) = 2>*€jt (2) 
k 

where ek is the orbital energy of the /cth MO and nj. is 
the number of electrons it contains. Let the normalized 

MO'sbe 

i 

where the </>'s are the basis AO's. Then 

ET, — / .tlk/ ,Cik.Cik.Hn 

With the usual approximations this simplifies to 

ET = a][X]Cc iA
2 + IfiYsPm 

(3) 

(4) 

(5) 

The last sum in eq 5 goes over all bonds, and pm is the ir 
bond order of the wth bond. Because of normaliza­
tion the double sum in (5) simplifies still further to give 

Na + 2/3£p„ (6) 

where N is the number of tr electrons in the system. 
The first term in (6) is the energy of the TT electrons in 
the field of infinitely separated nuclei. The second 
term is the bonding energy. Empirical bond energies 
were obtained4 from a least-squares fit to this term for 
40 acyclic hydrocarbons. With the bond energies thus 
obtained, the energy of the localized structure of buta­
diene, for example, is 

£•100 = 2E23 + £12 = 4.4660/3 (7) 
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Figure 2. Solid line, the function f(p); dotted and dashed lines, 
first and first plus second terms in the expansion of f(p) about p = O. 

where E23 and Ei2 are the bond energy terms for the 
double and single bonds in butadiene. Measuring the 
Hiickel E1, relative to a in the usual way {i.e., dropping 
the first term in eq 6), one has E1, = 4.472/3. The differ­
ence, E1, — £ loc = 0.006/3, is the TT resonance energy 
and is essentially zero in this case. 

The a energy may be written approximately 

E. = ncE°c + «H£*H + 2>*CH(0 + Z^ccU) (8) 

The first two terms, with nc = the number of carbon 
atoms, E°c = the a energy of an isolated carbon atom, 
and HH and f H = the analogous quantities for hydro­
gen, will cancel in computations of heats of atomiza-
tion or binding energies and need be examined no fur­
ther. All CH bonds will be assumed identical, reduc­
ing the third term in eq 8 to «CH^'CH) with nCH = the 
number of CH bonds. E"cc(j) is the a energy of the 
jth CC bond. Assuming a harmonic potential, this 
becomes 

cc1 U) °cc + 1M*, - sy- (9) 

Here Xj is the length of thej'th bond, s is the length of a 
pure sp2-sp2 single bond, e is the stretching force con­
stant for such a bond, and E0Cc is its energy. 

Changes in <r energy can now be related to changes in 
7T energy using the bond orders from (6) to compute 
bond lengths to be substituted into (9). We have 
used the bond-order-bond-length relation suggested by 
Figeys and Dedieu9 

x = 
es - l.5(es - 1.3975)p 

e - 1.5(e - 6)p 
(10) 

The bond length x is given in A with e = 5.6 X 105 

dyn cm -1 , 5 = 7.6 X 105 dyn cm -1 , and 5 = 1.517 A. 
The a compression energy is then proportional to 

f(P) = (X- sy = 
1.55(1.397 - s)p' 

OD - 1.5(e - 6)p_ 

Note that the 7r binding energy (second term in eq 6) is 

linear in the various p's. The a compression energy 
72ef(p) is not at first sight linear in p; in fact the leading 
term in the expansion of f(p) about p = 0 is quadratic. 
Nevertheless, a plot of f(p) shows (Figure 2) that the 
function is practically linear over the range p = 
0.3-0.9 where most bonds occur. 

Thus for a given bond the a and the 7r contributions to 
the binding energy are both linear functions of the bond 
order. It follows than that the 7r contribution to 
resonance energy is proportional to the <r contribution. 
In the next section we evaluate these quantities using 
experimental heats of atomization and see that this ex­
pected proportionality does hold. This linear correla­
tion gives a rational basis for the calculation of resonance 
energies of cyclic conjugated hydrocarbons using only the 
simple HMO TT energies since any set of compounds 
arranged in order of increasing T resonance energy is 
automatically in order of increasing total resonance 
energy. 

Heats of Atomization 

Dewar's theoretical definition of resonance energy 
suggests a corresponding experimental definition. If 
experimental binding energies of acyclic polyenes are 
accurately given by summing individual bond energy 
terms, experimental resonance energy can be defined as 
the difference between experimental binding energy and 
the sum of bond energy terms. This difference would 
vanish for acyclics, but not necessarily for cyclics. 
Resonance energy would then give a measure of the 
binding energy of a molecule compared to that of an 
acyclic polyene. Those with more would be called 
aromatic; those with less would be antiaromatic, and 
the acyclic polyenes themselves nonaromatic. If the 
acyclics do not have this additive property, resonance 
energy could still be defined in the same way with some 
arbitrary set of bond energy terms. But in this case 
there would be no group of real molecules with zero 
resonance energy, and the definition would lose some of 
its physical appeal. 

At present there are three difficulties in carrying out a 
comparison of experimental and theoretical resonance 
energies based on this definition. First, the molecular 
energies from a variational calculation refer to mole­
cules at the bottom of their potential curves. Even at 
O0K correction for the zero-point vibrations must be 
made, and at any other temperature one must allow for 
the spread of molecules through excited translational, 
rotational, and vibrational states. This can be done 
to an accuracy of approximately 1 kcal/mol when com­
plete configuration interaction wave functions are 
known.10 Similar accuracy can also be obtained from 
good SCF wave functions of somewhat larger systems 
for processes in which correlation energy does not 
change significantly.1112 In semiempirical work it is 
usual to ignore these corrections or to hope that they 
are automatically taken into account by the adjustable 
parameters of the method used.13,14 

(10) M. E. Schwartz and L. J. Schaad, / . Chem. Phys., 47, 5325 
(1967). 

(11) L. C. Snyder, ibid., 46,3602 (1967). 
(12) L. C. Snyder and H. Basch, / . Amer. Chem. Soc, 91,2169 (1969). 
(13) J. D. Cox and G. Pilcher, "Thermochemistry of Organic and 

Organometallic Compounds," Academic Press, New York, N. Y., 1970, 
Chapter 7. 

(14) A. L. H. Chung and M. J. S. Dewar, / . Chem. Phys., 42, 756 
(1965). 
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Table I. Observed and Calculated Heats of Atomization (eV) 
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Compound 

1 Benzene 
2 Naphthalene 
3 Phenanthrene 
4 Anthracene 
5 Pyrene 
6 Triphenylene 
7 Benz[a]anthracene 
8 Benz[c]phenanthrene 
9 Chrysene 

10 Perylene 
11 Tetracene 
12 Butadiene 
13 Hexatriene 
14 Azulene 
15 Acenaphthylene 
16 Fluoranthene 
17 Fulvene 
18 Pentalene 
19 Heptalene 
20 Pyracyclene 
21 Acepleiadylene 
22 Biphenylene 
23 Fulvalene 
24 3-Radialene 
25 4-Radialene 
26 Benzcyclobutadiene 
27 Sesquifulvalene 
28 Dimethylenecyclobutene 
29 s-Indacene 
30 Calicene 
31 Cyclobutadiene 

Obsd" 

57.16 
90.61 

124.20 
123.93 
138.88 
157.76 
157.49 
157.48 
157.73 
172.04 
157.56 
42.05 
61.10 
89.19 

104.32 
138.11 

Method A 

57.14 
90.59 

124.14 
123.95 
138.60 
157.79 
157.54 
157.67 
157.67 
172.12 
157.30 
42.01 
60.84 
90.13 

104.86 
138.58 
56.37 
70.74 

108.60 
118.92 
138.24 
104.67 
89.29 
56.12 
74.70 
70.57 

109.04 
55.98 

104.32 
71.43 
36.20 

Method B 

57.14 
90.59 

124.14 
123.95 
138.60 
157.79 
157.54 
157.67 
157.67 
172.12 
157.30 
42.02 
60.86 
90.13 

104.87 
138.59 
56.39 
70.74 

108.60 
118.94 
138.24 
104.70 

89.33 
56.15 
74.76 
70.64 

109.04 
56.02 

104.31 
71.43 
36.20 

Dewar 

57.16 
90.61 

124.22 
123.89 
138.62 
157.94 
157.58 
157.77 
157.77 
172.15 
157.11 
42.05 
60.81 
89.46 

104.86 
138.67 
56.34 
70.53 

108.15 
119.05 
137.93 
104.87 
89.40 
56.19 
74.94 

108.23 

70.72 

Figeys6 

57.09 
90.60 

124.20 
124.04 
138.72 
157.86 
157.67 
157.77 
157.78 
172.29 
157.47 
42.07 
60.93 
90.22 

104.99 
138.71 
56.51 
70.92 

108.78 
119.25 
138.43 
104.88 
89.66 
56.35 
75.07 
70.92 

109.14 
56.26 

104.52 
71.48 
36.53 

Adiff 

0.02 
0.02 
0.06 

- 0 . 0 2 
0.28 

- 0 . 0 3 
- 0 . 0 5 
- 0 . 1 9 

0.06 
- 0 . 0 8 

0.26 
0.04 
0.26 

- 0 . 9 4 
- 0 . 5 4 
- 0 . 4 7 

Bdiff 

0.02 
0.02 
0.06 

- 0 . 0 2 
0.28 

- 0 . 0 3 
- 0 . 0 5 
- 0 . 1 9 

0.06 
- 0 . 0 8 

0.26 
0.03 
0.24 

- 0 . 9 4 
- 0 . 5 5 
- 0 . 4 8 

Dewar 
diff 

0.00 
0.00 

- 0 . 0 2 
0.04 
0.26 

- 0 . 1 8 
- 0 . 0 9 
- 0 . 2 9 
- 0 . 0 4 
- 0 . 1 1 

0.45 
0.00 
0.29 

- 0 . 2 7 
- 0 . 5 4 
- 0 . 5 6 

Figeys 
diff 

0.07 
0.01 
0.00 

- 0 . 1 1 
0.16 

- 0 . 1 0 
- 0 . 1 8 
- 0 . 2 9 
- 0 . 0 5 
- 0 . 2 5 

0.09 
- 0 . 0 2 

0.17 
- 1 . 0 3 
- 0 . 6 7 
- 0 . 6 0 

" Reference 8. b These numbers have been recalculated by us using Figeys' method. They agree with his published results for the alter­
nants, but there are small differences for the nonalternants. Professor Figeys has himself now recalculated these and agrees with our 
numbers. We are grateful to him for correspondence on this point. 

Second, the Gibbs free energies that one really wants 
for comparisons of stability are not commonly avail­
able and one identifies theoretical energies with enthal­
pies instead.7,14 

Third, experimental heats of atomization are not 
available for enough acyclic polyenes to test whether 
or not they are accurately given as the sum of bond 
energy terms. As Dewar explains (ref 7, p 176), his 
experimental resonance energies are obtained using 
bond energies from calculated rather than experi­
mental polyene results. The plausible, but not yet 
experimentally verified, justification is that if one is 
able to get calculated heats of atomization that are in 
good agreement with experiment for cyclic compounds, 
the same should be true for acyclics, and the calculated 
bond energy terms should then agree with the experi­
mental when they become available. Consequently, 
in this approach it is important to show that a suggested 
computational method can yield sufficiently accurate 
heats of atomization. 

We shall present in this section two methods based 
on HMO calculations, one with and one without ex­
plicit inclusion of a effects, for the computation of 
heats of atomization of conjugated hydrocarbons. Re­
sults will be compared with those of more complex 
calculations by Dewar3 and Figeys.8 

Method A. Combining the a- and 7r-energy expres­
sions, eq 6 and 8-10, and subtracting the result from 
the energy of the isolated atoms give the heat of atomi­
zation as approximately 

A # a = - [nCH£*cH + «cc£°cc + 
£72e(x3 - 1.517)2 + 2/3£Pm] (12) 
J m 

The three unknowns (£ ' C H , £°cc> and /3) were deter­
mined by using the experimental heats of atomization 
for compounds 1-10 (see Table I) and the least-squares 
method. The values obtained are L CH — 

4.2599 
eV,£°cc = -3.2613 eV, and/3 = -1.6911 eV. These 
values were in turn used in eq 12 to calculate the heats 
of atomization of 11-31 (Table I). The experimental 
heats of atomization in Table I are those used by 
Figeys.8 They are the same as the set used by Dewar 
and de Llano3 except in the case of hexatriene where 
these authors listed no experimental number. For 
the unstrained compounds 1-13 our computed A//a 's 

Table II. Empirical Total (<J + IT) Carbon-Carbon Bond 
Energies Obtained from Acylic Conjugated Olefins 

Type of bond 

H 2 C = C H 
H C = C H 
H 2 C = C 
H C = C 
C = C 
H C - C H 
H C - C 
C - C 

Designation 

23 
22 
22' 
21 
20 
12 
11 
10 

Calculated (a + T) 
bond energy, eV 

6.0000° 
5.9041 
6.0000« 
5.9619 
6.0574 
4.4389 
4.2920 
4.1891 

'• Arbitrarily assigned. 
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6/22(xy - s)\ C - C energy Additive C - C 
Compd TT energy, 0 > eV (<r + r), eV energy, eV TRE, eV TREPE, eV REPE, /3 SREPE, eV 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

8.000 
13.683 
19.448 
19.314 
22.505 
25.274 
25.101 
25.187 
25.192 
28.245 
24.931 
4.472 
6.988 
13.364 
16.619 
22.500 
7.466 
10.456 
15.618 
19.416 
22.252 
16.505 
12.799 
7.301 
9.657 
10.381 
15.931 
7.208 
16.231 
10.939 
4.000 

1.511 
2.506 
3.524 
3.487 
4.025 
4.558 
4.511 
4.533 
4.534 
5.036 
4.463 
0.899 
1.362 
2.419 
2.978 
4.028 
1.379 
1.848 
2.808 
3.430 
3.955 
2.983 
2.307 
1.355 
1.801 
1.900 
2.894 
1.340 
2.866 
1.981 
0.649 

-31.586 
-56.508 
-81.546 
-81.355 
-95.998 

-106.670 
-106.424 
-106.548 
-106.555 
-121.000 
-106.184 
-16.448 
-26.761 
-56.053 
-70.784 
-95.986 
-30.814 
-45.185 
-66.001 
-84.845 
-95.638 
-70.587 
-55.212 
-30.558 
-40.620 
-45.007 
-66.442 
-30.416 
-70.240 
-45.869 
-19.160 

-31.029 
-55.724 
-80.461 
-80.420 
-94.854 
-105.242 
-105.157 
-105.197 
-105.197 
-119.637 
-105.116 
-16.439 
-26.782 
-55.726 
-70.118 
-94.900 
-30.831 
-45.383 
-66.069 
-84.512 
-94.856 
-70.161 
-55.720 
-30.567 
-40.756 
-45.381 
-66.063 
-30.677 
-70.080 
-45.377 
-20.686 

-0.577 
-0.784 
-1.085 
-0.935 
-1.144 
-1.428 
-1.267 
-1.351 
-1.358 
-1.363 
-1.068 
-0.009 
0.021 

-0.327 
-0.666 
-1.086 
0.017 
0.198 
0.069 

-0.333 
-0.782 
-0.426 
0.508 
0.009 
0.136 
0.374 

-0.379 
0.261 

-0.160 
-0.492 
1.526 

-0.0927 
-0.0784 
-0.0775 
-0.0668 
-0.0715 
-0.0793 
-0.0704 
-0.0750 
-0.0754 
-0.0681 
-0.0593 
-0.0022 
0.0035 

-0.0327 
-0.0555 
-0.0679 
0.0029 
0.0247 
0.0057 

-0.0238 
-0.0489 
-0.0355 
0.0508 
0.0015 
0.0171 
0.0468 

-0.0316 
0.0435 

-0.0134 
-0.0615 
0.3815 

0.0654 
0.0553 
0.0555 
0.0471 
0.0505 
0.0563 
0.0498 
0.0526 
0.0533 
0.0483 
0.0417 
0.0016 

-0.0023 
0.0231 
0.0394 
0.0483 

-0.0020 
-0.0176 
-0.0042 
0.0181 
0.0346 
0.0275 

-0.0329 
-0.0011 
-0.0108 
-0.0267 
0.0222 

-0.0284 
0.0092 
0.0434 

-0.2680 

0.0179 
0.0150 
0.0150 
0.0128 
0.0139 
0.0157 
0.0137 
0.0146 
0.0147 
0.0135 
0.0113 
0.0004 

-0.0004 
0.0064 
0.0111 
0.0138 

-0.0006 
-0.0050 
-0.0013 
0.0068 
0.0096 
0.0111 

-0.0048 
-0.0004 
-0.0012 
0.0016 
0.0060 

-0.0045 
0.0022 
0.0118 

-0.0716 
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Table III. Total Resonance Energies as Calculated by Method A 

agree slightly better with experiment than do Dewar's, 
the sum of absolute errors being 1.37 and 1.77 eV, 
respectively. As expected, since angle strain has not 
been taken into account, heats of atomization of com­
pounds with five- or seven-membered rings are not 
computed as accurately. 

We now have the parameters needed to examine both 
the ex and the TT contributions to the resonance energy. 
Total (a + T) binding energies were computed using 
(6) and (8) for the 40 acyclic hydrocarbons in Table II 
of ref 4, and empirical bond energies were fit by least 
squares to these (Table II). As before, two of the eight 
bond types must be assigned arbitrarily due to linear 
dependence. These bond energies were then used to 
calculate the total resonance energies (TRE) of com­
pounds 1-31 by subtracting the total (<r + ir) carbon-
carbon localized energy, obtained in an additive fash­
ion using the bond energies given in Table II, from the 
total carbon-carbon energy obtained by method A 
(see Table III). Total resonance energies per w elec­
tron (TREPE) were also calculated for comparison 
with the previously calculated4 tr resonance energy per ir 
electron (REPE). 

a resonance energy per 7r electron (SREPE) was ob­
tained as the difference between TREPE and REPE. 
Figures 3 and 4 show the expected linear relation be­
tween the a and ir contributions to the resonance energy. 
The a effect is smaller than the ir, but it is not negligible. 
Note that the two are of opposite sign. That is, what 
we have called "cr resonance energy" by analogy with 
the ir resonance energy is actually a destabilization 
energy due to compression and stretching of the a 
framework. 

Method B. Since a compression terms are approxi­
mately linear in ir binding energies, one can combine 
the two and write 

A#a = - [ W C H ^ C H + «cc£°cc + 2/3£pm] (13) 
m 

The /3 in eq 13 is, of course, not the same as in eq 12 
since the last term in eq 13 is the sum of the last two 
terms in eq 12. Fitting the three parameters in eq 13 
to the experimental heats of atomization of compounds 
1-10 one obtains E'CH = -4.2606 eV, £ ° c c = -3.3702 
eV, and /3 = —1.4199 eV. These parameters give 
computed heats of atomization (Table I) as accurate as 
those from any of the more elaborate methods. The 
/3 (= -1.4199 eV = -32.74 kcal/mol) is appropriate 
for simple HMO work since it automatically takes into 
account changes in the er skeleton. 

The computed heats of atomization above appear to 
be satisfyingly accurate with average error being under 
0.1%. However, the heats of atomization are them­
selves large numbers, and a small per cent error may 
lead to large errors in quantities such as resonance 
energies which are differences between two large heats of 
atomization. It is true that a method with even larger 
error might, by cancellation, give accurate resonance 
energies. But this cannot be checked until experi­
mental Ai/a 's are available for the acyclics. Are the 
A.#a's by method B accurate enough to ensure reliable 
resonance energies? The standard deviation of the fit 
of observed to calculated AHa per electron for the un­
strained compounds (1-13) in Table 1 is 0.0037 eV. 
REPE is the difference between two such quantities, 
and should therefore have a standard deviation of y/2 X 
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REPE x 1CT 
(ev) 

Figure 3. Total resonance energy per ir electron (TREPE) vs. the 
T resonance energy per ir electron. 

REPE x 1O2 

(ev) 

Figure 4. r resonance energy per T electron (REPE) vs. a reson­
ance energy per x electron (SREPE). 

0.0037/3/1.4199 = 0.004/3 = 0.12 kcal/mol. Molecules 
we have studied typically have REPE's lying between 
+0.05 and -0.05/3. An accuracy of ±0.005)3 seems 
sufficient to make REPE a useful index. 

Strain Energies 

In all the methods above, computed A//a 's are sig­
nificantly worse for the nonalternants 14-16. This is 
not surprising since these compounds contain strained 
rings and none of the methods took angle strain into 
account. Note that all errors are in the correct direc­
tion to be explained by angle strain; i.e., 14-16 are 
computed to be more stable than observed. 

To obtain a quantitative estimate of angle strain we 
have used a method developed by Dauben.16 This 
work was never published but appears to have been 
widely circulated and has been quoted in the literature.16 

We are indebted to Professor K. B. Wiberg who sug­
gested the method to us and sent us a copy of Dauben's 
notes. Dauben assumed the strain energy to be of the 
form 72^(Ao:)2, where Aa is the strain angle. The 
value A = 0.024 kcal deg -2 gave good results for both 
CC single and double bonds. In the case of angle 
deformation about a triply substituted C atom, as in 
the ring junctions of azulene, Dauben summed the 
contribution of all three angle distortions. It seems 
to us somewhat more reasonable not to do this. The 
value of A was obtained by considering experimental 
energies of monocyclic olefins and paraffins. For 
such olefins, the internal angles of the ring were con­
sidered, but distortion of external CCH angles was not. 
The external CH bond presumably adjusted itself to 
bisect the internal CCC angle, and any energy changes 
were counted with the CCC bend. For a triply sub­
stituted carbon atom it seems more consistent to count 
one of the angle distortions from 120° plus the angle of 
distortion of the remaining bond from the bisector of 
the first angle. The resulting energy depends upon 
which angle one chooses first. We take as the first 
angle that closest to 120°. This gives the minimum 
distortion energy. For example, in azulene assuming, 

(15) H. J. Dauben, Notes on Hydrocarbon Strain Energies. 
(16) A. Streitwieser, Jr., "Molecular Orbital Theory for Organic 

Chemists," Wiley, New York, N. Y., 1961, p 244. 

as Dauben does, regular polygons for the two rings, 
the angle internal to the five-membered ring at the ring 
junction is 108°; that of the seven-membered ring is 
128.5714°; and the external angle is 123.4286°. Dau­
ben gives for the strain around this atom 72-4[(12O — 
108)2 + (120 - 128.5714)2 + (120 - 123.4286)2] = 
2.75 kcal. We get instead 72^[(120 - 123.4286)2 + 
(72[360 - 123.4286] - 108)2] = 1.41 kcal. There 
are no experimental data to choose between these two. 
Table IV shows the computed strain energies and errors 

Table IV. Strain Energ 

Compound 

14 Azulene0 

15 Acenaphthylene 
16 Fluoranthene 

ies 

Strain 
energy, 

kcal 

12.41 
(16.4) 
12.81 
12.81 

Error in computed AH* 
corrected for strain, eV 

Method 
A 

-0 .40 
(-0.23) 
-0 .02 

0.09 

Method 
B Dewar 

-0 .40 0.27 
(-0.23) (0.44) 
-0 .01 -0 .02 

0.08 0.00 

° The numbers in parentheses are obtained with Dauben's value 
of the azulene strain energy. 

in revised heats of atomization. It is seen that strain 
energy corrections make the nonalternant results as 
accurate as those for the alternants. 

Conclusions 

Dewar's definition of aromaticity seems to us very 
appropriate since extra stability, compared to an open 
chain polyene, is a property that most would agree 
compounds called aromatic possess. Others might 
prefer another definition, but if one does agree upon this 
definition, two questions remain. First, how well do 
other physical properties such as substitution vs. addi­
tion, nmr chemical shift, and bond alternation corre­
late with aromaticity? Second, how well do various 
theoretical methods compute aromaticity? If one has 
accepted Dewar's definition, and if a method computes 
accurate heats of atomization for a compound and its 
corresponding localized polyene, and if the compound 
is thus computed to be aromatic, then by definition it is 
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aromatic. If, for example, the nmr spectrum then does 
not show low-field protons, this concerns the first ques­
tion, not the second. 

Fewer experimental heats of atomization of con­
jugated hydrocarbons are available than one would 
like, but for those available we have shown that the 
simple HMO method gives as accurate results, and 
therefore as accurate predictions of aromaticity, as 

In the previous paper1 a generalized method of calcula­
tion using the principle of least motion (PLM) was 

outlined. This approach, which is an extension of that 
used previously by Hine,3 was applied to a variety of 
systems in order to gain insight into the types of re­
actions to which it might be usefully applicable. The 
present paper outlines calculations carried out on several 
molecular rearrangements. Since the PLM approach 
neglects those atoms not common to the reactant and 
the product,13 such reactions should be particularly 
amenable to study. 

Concern has been expressed4 because the calculations 
consider only the motions of nuclei explicitly. How­
ever, the electronic structures of the reactant and the 
product are implicit in their geometries. For instance, 
the choice of a planar geometry for ethylene with 
equilibrium bond lengths and bond angles implies that 
the electronic structure corresponds to that of the 
ground state. To require that the geometry of the 
reactant change smoothly to that of the product implies 
that their electronic structures interchange smoothly 
also. The conservation of orbital symmetry6 also re­
quires that electronic structure and molecular geometry 
change smoothly from reactant to product. 

The understanding of the stereochemical courses of 
many rearrangements has been greatly enhanced by the 
invocation of orbital symmetry and, in particular, by 
the work of Woodward and Hoffmann.s However, not 

(1) Part I: O. S. Tee, J. Amer. Chem. Soc, 91, 7144 (1969). 
(2) (a) Author to whom correspondence should be addressed at Sir 

George Williams University; (b) University of Toronto. 
(3) J. Hine, J. Amer, Chem. Soc., 88, 5525 (1966). 
(4) In particular by one of the referees. 
(5) R. B. Woodward and R. Hoffmann, "The Conversation of Orbital 

Symmetry," Academic Press, New York, N. Y., 1970, and references 
therein. 

Dewar's Pariser-Parr-Pople method. Note again that 
in this work we have not modified the Hiickel method 
itself. We have used it in the familiar simple version, 
and have changed only the reference structure to ac­
cord with Dewar's definition of aromaticity. It re­
mains to be seen how far this success of the simple 
Hiickel method can be extended. Preliminary work on 
heterocycles is encouraging. 

all systems of interest can be treated by such an ap­
proach. In some instances there may not be suitable 
elements of symmetry present to enable the correlation 
of energy levels. In other cases, symmetry arguments 
may not be able to distinguish between two allowed 
processes having different stereochemical consequences. 
It is hoped that PLM calculations may prove to be of 
value in such cases. 

Method of Calculation 

The minimum sum of the squares of the atomic dis­
placements (.Emin)1 between reactant and product was 
calculated using the program LESMOT, the basis of which 
was described earlier.16 For systems where many dif­
ferent conformers of the reactant and/or product were 
considered, a program LESMOT/2 was utilized which in­
corporates LESMOT as a subroutine and which evaluates 
the desired conformations from given initial geometries 
of the reactant and the product. 

The geometries of the molecules studied were cal­
culated7 either from their published molecular param­
eters, or from estimates based upon suitable models.8 

The parameters used are listed in Table I. 

(6) The mathematical approach described earlier1 is very similar to 
that used for least-squares fitting to nonlinear functions. See, for 
example: (a) J. B. Scarborough, "Numerical Analysis," John Hop­
kins Press, Baltimore, Md., 1958; (b) H. Kim, J. Chem. Educ, 47, 120 
(1970); (c) N. R. Draper and H. Smith, "Applied Regression Analysis," 
Wiley, New York, N. Y., 1968, Chapter 10. 

(7) Calculation was either by hand or using the program CORCAL 
(Quantum Chemistry Program Exchange, Indiana University, Bloom-
ington, Ind., 1970, program no. 130). 

(8) "Tables of Interatomic Distances and Configuration in Molecules 
and Ions," Chem. Soc., Spec. Publ., No. 11 (1958); No. 18 (1965). 
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Abstract: Calculations using the principle of least motion have been extended to cover a variety of molecular 
rearrangements: cyclopropyl-allyl, butadiene-cyclobutene, hexatriene-cyclohexadiene, cyclohexane-cyclohexane, 
Cope, methylcarbene-ethylene. Despite the assumptions inherent in the approach, there is remarkable concor­
dance with experimental observations and the predictions of more sophisticated theoretical models. The relation 
between the predictions of the present approach and those arising from consideration of orbital symmetry is 
discussed. 
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